domingo, 25 de mayo de 2008

Estructura y contenido del segundo Objetivo

Conceptos de Universo. Sistema Solar. Galaxia.
Estrella, Luna, planetas y sus relaciones. Factores que
influyen en la formación de la tierra. Movimientos,
teorías y elementos que la conforman.Composición. Características y elemento

Historia de la astronomia

Astronomía
La astronomía es la ciencia que estudia el universo, los cuerpos que lo constituyen, las posiciones relativas que ocupan, las leyes que gobiernan sus movimientos y la evolución que experimentan a lo largo del tiempo.
La astronomía comprende tres ramas principales:
*La astronomía fundamental: Estudia las magnitudes que determinan la variación natural de las coordenadas de los astros.
*la astrofísica: Aspectos aplicado y teórico.
*La cosmología: Estudia las leyes generales de la estructura, el origen y la evolución del universo considerado como un todo.
Hay otra serie de ramas particulares como:
a)La astrometría dedicada a la medición del espacio y el tiempo.
b)la astronomía práctica que desarrolla métodos de cálculo de coordenadas geográficas, acimuts, tiempos, así como los instrumentos necesarios para ello.
c)La astronomía teórica que se encarga del cálculo de las órbitas de los cuerpos celestes a partir de sus posiciones aparentes y efemérides.
d)La mecánica celeste que estudia las leyes del movimiento de los astros bajo la acción de la gravitación universal.
e)La astronomía estelar que se ocupa del estudio de las leyes de distribución y del movimiento de las estrellas.
f)La cosmogonía que estudia la génesis y la evolución de los astros. Historia de la astronomía
Las primeras civilizaciones se sirvieron de la astronomía para establecer con precisión las épocas adecuadas para sembrar y recoger las cosechas y para las celebraciones. También lograron utilizarla para orientarse en las largas travesías comerciales o en los viajes. Los egipcios, mayas y chinos desarrollaron interesantes mapas de las constelaciones y calendarios de gran utilidad, pero tal vez fueron los babilonios los que realizaron cosas más importantes.
Astronomía babilónica
Para perfeccionar su calendario, los babilonios, estudiaron los movimientos del Sol y de la Luna. Solían designar como comienzo de cada mes el día siguiente a la luna nueva, cuando aparece el primer cuarto lunar después del ocaso.
Hacia 400 a.C. comprobaron que los movimientos aparentes del Sol y la Luna de Oeste a Este alrededor del zodíaco no tienen una velocidad constante. Estos cuerpos se mueven con velocidad creciente durante la primera mitad de cada revolución hasta un máximo absoluto y entonces su velocidad disminuye hasta el mínimo originario.
Además perfeccionaron el método matemático representando la velocidad de la Luna como un factor que aumenta linealmente del mínimo al máximo durante la mitad de su revolución y entonces desciende al mínimo a final del ciclo. Con estos cálculos los astrónomos babilonios podían predecir la luna nueva y el día que comenzaría el nuevo mes. Como consecuencia, conocían las posiciones de la Luna y del Sol todos los días del mes. También eran capaces de calcular las posiciones planetarias.
Astronomía griega
La Odisea de Homero se refiere a constelaciones como la Osa Mayor, Orión y las Pléyades y describe cómo las estrellas pueden servir de guía en la navegación. El poema Los trabajos y los días de Hesíodo informa al campesino sobre las constelaciones que salen antes del amanecer en diferentes épocas del año para indicar el momento adecuado para arar, sembrar y recolectar.
Los griegos comenzaron el estudio de los movimientos planetarios. Hombres como Thales de Mileto o Pitágoras realizaron importantes aportaciones en el siglo VI a. C. Existe una leyenda que afirma que Thales fue capaz de predecir un eclipse total de Sol el 28 de mayo del 585 a.C.
Aristarco de Samos (S. IV a.C.) creía que los movimientos celestes se podían explicar mediante la hipótesis de que la Tierra gira sobre su eje una vez cada 24 horas y que junto con los demás planetas gira en torno al Sol. En aquella época, la mayoría de los filósofos griegos pensaban que la Tierra era un cuerpo inmóvil y que los cuerpos celestes giraban en torno a ella; por eso la teoría de Aristarco fue rechazada. La teoría del sistema geocéntrico permaneció inalterada unos 2.000 años.
En el siglo II d.C. los griegos combinaban sus teorías celestes con observaciones trasladadas a planos. Los astrónomos Hiparco de Nicea y Tolomeo determinaron las posiciones de unas 1.000 estrellas y utilizaron este mapa estelar como base para medir los movimientos planetarios. Mediante una serie de procedimientos Tolomeo llegó a la conclusión de que los demás planetas giraban alrededor de la Tierra.
Sistema de Tolomeo
Tolomeo planteó un modelo de universo con la Tierra en el centro. Cada cuerpo celeste giraba en un pequeño círculo denominado epiciclo, centrado en un punto que giraba a su vez alrededor de la Tierra en un gran círculo llamado deferente. El modelo de Tolomeo fue aceptado durante mil años.
La astronomía griega se transmitió más tarde hacia el Este a los sirios, indios y árabes. Los astrónomos árabes recopilaron nuevos catálogos de estrellas en los siglos IX y X y desarrollaron tablas del movimiento planetario. Sin embargo, aunque los árabes eran buenos observadores, hicieron pocas aportaciones útiles a la teoría astronómica.
Los europeos
En el siglo XIII hicieron tablas de los movimientos planetarios, basándose en el sistema de Tolomeo y divulgaron su teoría. Años más tarde Nicolás de Cusa y Leonardo da Vinci cuestionaron la posición central y la inmovilidad de la Tierra.
Nicolás Copérnico (siglo XVI) dedicó la mayor parte de su vida a la astronomía y realizó un nuevo catálogo de estrellas a partir de observaciones personales. En su obra De revolutionibus orbium caelestium (1543) analiza críticamente la teoría de Tolomeo de un Universo geocéntrico y muestra que los movimientos planetarios se pueden explicar si el Sol estuviera en una posición central.
Galileo aportó pruebas para defender lo que dijo Copérnico. En 1609 construyó un pequeño telescopio de refracción, lo dirigió hacia el cielo y descubrió las fases de Venus, lo que indicaba que este planeta gira alrededor del Sol.
También descubrió cuatro lunas girando alrededor de Júpiter. Estaba convencido de que al menos algunos cuerpos no giraban alrededor de la Tierra y por ello comenzó a hablar y a escribir a favor del sistema de Copérnico. Sus intentos de difundir este sistema le llevaron ante un tribunal eclesiástico. Aunque fue obligado a renegar de sus creencias y de sus escritos, esta teoría no pudo ser suprimida.
Tycho Brahe, un astrónomo danés, observó el Sol, la Luna y los planetas en su observatorio situado en una isla cercana a Copenhague y después en Alemania desde 1580 a 1597. Utilizando los datos recopilados por Brahe, su ayudante alemán, Johannes Kepler, formuló las leyes del movimiento planetario, afirmando que los planetas giran alrededor del Sol y no en órbitas circulares con movimiento uniforme, sino en órbitas elípticas a diferentes velocidades, y que sus distancias relativas con respecto al Sol están relacionadas con sus periodos de revolución.
Newton adelantó un principio sencillo para explicar las leyes de Kepler sobre el movimiento planetario: la fuerza de atracción entre el Sol y los planetas (ley de la gravitación universal). Esta fuerza, que depende de las masas del Sol y de los planetas y de las distancias entre ellos, proporciona la base para la explicación física de las leyes de Kepler.
Los últimos siglos
Tras la época de Newton, la astronomía se ramificó en diversas direcciones. Con esta ley de gravitación el viejo problema del movimiento planetario se volvió a estudiar como mecánica celeste. Telescopios perfeccionados permitieron la exploración de las superficies de los planetas, el descubrimiento de muchas estrellas débiles y la medición de distancias estelares. En el siglo XIX el espectroscopio aportó información sobre la composición química de los cuerpos celestes y nueva información sobre sus movimientos
Durante el siglo XX se han construido telescopios de reflexión cada vez mayores. Los estudios realizados con estos instrumentos han revelado la estructura de enormes y distantes agrupamientos de estrellas, llamadas galaxias, y de cúmulos de galaxias. En la segunda mitad del siglo XX los progresos en física proporcionaron nuevos tipos de instrumentos astronómicos, algunos de los cuales se han emplazado en los satélites que se utilizan como observatorios en la órbita de la Tierra.

Astronomia

En esta página encontraran los contenidos necesarios, www.astromia.com

sábado, 12 de abril de 2008

http://historiadelaciencia.idoneos.com/

En esta Pagina, se encontraran con la historia de la ciencia en etapas, las cuales deberan imprimir y analizar para la próxima tutoria.

Contenido
La ciencia en la Antigüedad
La ciencia durante la época romana
La ciencia en tiempos medievales
La revolución científica
El método científico en la modernidad
La consolidación de la revolución científica en el siglo XVII
El método de Isaac Newton
La teoría de la evolución

La Ciencia y sus caracteristicas

Conceptos de ciencia
Mario Bunge:
Conjunto de conocimientos obtenidos mediante la
observación y el razonamiento, y de los que se deducen principios y leyes generales. En su sentido más amplio se emplea para referirse al conocimiento en cualquier campo, pero que suele aplicarse sobre todo a la organización del proceso experimental verificable.
Trefil James:
La ciencia puede caracterizarse como conocimiento racional, exacto y verificable. Por medio de la
investigación científica, el hombre ha alcanzado una reconstrucción conceptual del mundo que es cada vez más amplia, profunda y exacta.
Hernán y Leo Sheneider:
Denominación de un conjunto de disciplinas escolares, que abarcan una serie de materias basadas en la experimentación y las
matemáticas.
Diccionario básico:
Conocimiento profundo acerca de la
naturaleza, la sociedad, el hombre y sus pensamientos<>
La ciencia se divide en numerosas ramas, cada una de las cuales tiene por objeto solo una parte de todo el saber adquirido, a través de la experiencia y la
investigación.
C. Exactas: Las que solo admiten principios y hechos rigurosamente demostrables.
C. Naturales: Las que tienen por objeto
el conocimiento de las leyes y propiedades de los cuerpos.
C.
Políticas: Las que estudian y analizan la estructura y funciones del gobierno.
C. de
la tierra: Conjunto de disciplinas que se ocupan de la historia, evolución y reconstrucción de lo periodos del pasado ocurridos en la tierra.
C. Humanas:
Disciplina que tiene como objeto el hombre y sus comportamientos individuales y colectivos.
Filosofía de
la ciencia: Trata de averiguar si por medio de la ciencia, las teorías científicas revelan la verdad sobre un tema.
APORTES
El
objetivo primario de la ciencia, es mejorar la calidad de vida de los humanos, también ayuda a resolver las preguntas cotidianas.
Muchos de los aportes que a realizado la ciencia es descifrando pequeñas incógnitas, como si la tierra era plana y no redonda, o porque
el agua moja, si existe un planeta además del nuestro. Las resoluciones de estas incógnitas ha aportado mucho a las investigaciones actuales, muchas de las cosas que sabemos hoy en día es porque personas en el pasado las resolvieron con la ayuda de la ciencia.
El estudio de la ciencia primordialmente se ha dado gracias a la necesidad, de darle explicación y solución a diferentes
problemas, por decir en la época antigua cuando querían controlar la mercancía que había en un país o sitio se tenia la necesidad de crear un mecanismo de conteo el cual ayudara a controlar la mercancía y así fue como de dio origen al sistema numérico actual.
Durante el transcurso de las décadas la ciencia
genero muchos de los descubrimientos de hoy como lo es el genoma humano, que se creo a partir del descubrimiento de los genes, que ha generado un gran avance en cuestiones medicas y por supuesto genéticas ya que se pueden prevenir futuras enfermedades; así como esta son muchos los aportes que la ciencia le ha realizado a las matemáticas, estadística, física, astronomía etc.
Relación de la ciencia y tecnología:
La relación que existe entre estas, es que ambas necesitan de un
método experimental para ser confirmadas, puede ser demostrable por medio de la repetición. Por otra parte, la ciencia se interesa mas por el desarrollo de leyes, las cuales son aplicadas por la tecnología para sus avances.
Existe una tecnología para cada ciencia, es decir, cada rama posee un sistema tecnología diferente, que permite un mejor desarrollo para cada una de ellas.
Cabe recordar, que la tecnología se percibe con
los sentidos, es decir, podemos observarla y verla.
Nosotros vivimos en un mundo que depende de forma creciente de la ciencia y la tecnología. Los
procesos de producción, las fuentes de alimentación, la medicina, la educación, la comunicación o el transporte son todos campos cuyo presente y futuro están fuertemente ligados al desarrollo tecnología y científico.
La ciencia y la tecnología han contribuido a mejorar nuestras condiciones de vida, aumentando la
calidad de vida y transformando nuestro entorno. Sin embargo, han ocasionado también problemas como lo son: el aumento de la contaminación, el uso de sustancias toxicas, el deterioro progresivo del medio ambiente, la desertización, el empobrecimiento de la flora y la fauna, los accidentes y enfermedades relacionados con la tecnología son una parte importante de estos riesgos.
Por otra parte también tiene efectos sobre la
economía, aumentando las diferencias entre los países desarrollados y en vías de desarrollo, y agravando las situaciones de pobreza.
La ciencia y la tecnología son elementos que van transformando nuestro entorno día a día.
METODO CIENTIFCO
Es el método de estudio de la naturaleza que incluye las
técnicas de observación, reglas para el razonamiento y la predicción, ideas sobre la experimentación planificada y los modos de comunicar los resultados experimentales y teóricos. Este método posee diferentes pasos que conllevan a la respuesta del fenómeno observado.
Observación: El primer paso del
método científico tiene lugar cuando se hace una observación a propósito de algún evento o característica del mundo. Esta observación puede inducir una pregunta sobre el evento o característica. Por ejemplo, un día usted puede dejar caer un vaso de agua y observar como se hace añicos en el piso cerca de sus pies. Esta observación puede inducirle la pregunta, "¿Porqué se cayo el vaso?"
Hipó
tesis: Tratando de contestar la pregunta, un científico formulará una hipótesis de la respuesta a la pregunta. En nuestro ejemplo hay varias posibles hipótesis, pero una hipótesis podría ser que una fuerza invisible (gravedad) jaló el vaso al suelo.
Experimentación: De todos los pasos en el método científico, el que verdaderamente separa la ciencia de otras disciplinas es el proceso de experimentación. Para comprobar, o refutar, una hipótesis el científico diseñará un experimento para probar esa hipótesis. A través de los siglos, muchos
experimentos han sido diseñados para estudiar la naturaleza de la gravedad. Detengámonos en uno de ellos.
Registro y
Análisis de datos: dentro de la labor científica es indispensable la recolección de datos(observaciones iniciales, resultados durante ya al final del experimento) en forma organizada, de manera que sea posible determinar relaciones importantes entre estos, para lo cual se utilizan tablas, graficas y en algunos casos dibujos científicos.
Análisis de Resultados: a fin de extraer la mayor
información de los datos recolectados Las personas de ciencia los someten a muchos estudios; entre estos en análisis estadístico, que consisten en utilizar las matemáticas para determinar la variación de un factor, tal como la
Pronostica la hipótesis. En realidad, al interpretar los datos reunidos dentro de una experiencia, lo mas importante es comparar los
registros iniciales con los obtenidos durante y al final del experimento, dando explicaciones o razones por las cuales existen cambios en los datos o se mantienen iguales Siempre que se realiza un análisis se debe contar con un soporte teórico que apoye los planteamientos hechos en relación con el problema.
Conclusiones: finalmente, después del análisis riguroso de los datos es importante plantear conclusiones que permitan tanto el investigador como a otras personas identificar con facilidad los resultados del estudio, determinando de forma precisa y resumida si la hipótesis planteada sobre el problema fue o no comprobada.
HISTORIA DE LA CIENCIA:
Los esfuerzos para sistematizar el conocimiento remontan a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de la cueva, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico.
Las culturas mesopotámicas aportaron grandes datos sobre la astronomía, sustancias químicas o síntomas de enfermedades inscritas en caracteres cuneiformes sobre tablilla de arcilla.otras tablillas que datan de los 2000 A.C. demuestran que los babilónicos conocían el teorema de Pitágoras, resolvían
ecuaciones y desarrollaron el sistema sexagesimal del que se deriva las unidades modernas para tiempos y ángulos.
En el valle Nilo se descubrieron papiros de un periodo próximo al de la
cultura mesopotámica, en el cual se encontraba información de la distribución del pan y la cerveza, y la forma de hallar el volumen de una parte de la pirámide, el sistema de medidas egipcio y el calendario que empleamos todos estos datos proceden de las antiguas civilizaciones antiguas.
Uno de los primeros sabios griegos que investigo las causas fundamentales de los fenómenos naturales fue, en el siglo VI a. C., el filosofo
Tales de Mileto que introdujo el concepto de que la tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, postulo que una Tierra esférica que se movía en una orbita circular alrededor de un fuego central. En Atenas, en el siglo IV a. C., la filosofía natural jonica y la ciencia matemática pitagórica llegaron a síntesis en la lógica de Platón y de Aristóteles.
Aristóteles en su
pensamiento destaca la teoría de las ideas, que proponía que los objetos del mundo físico solo se parecen o participan de las formas perfectas del mundo ideal, y que solo las formas perfectas pueden ser el objeto del verdadero conocimiento. También estudió y sistematizó casi todas las ramas existentes del conocimiento y proporcionó las primeras relaciones ordenadas de biología, psicología, física y teoría literaria.
Arquímedes realizo grandes contribuciones a la matemática teórica, además también aplico la ciencia en la vida diaria. El sistema de Tolomeo la teórica geocéntrica la cual postula que la Tierra es el centro del
universo.
Nicolás Copernico revoluciono la ciencia al postular que la tierra y los demás
planetas giran alrededor del sol estacionario.
Galileo es físico italiano marco el rumbo de la física moderna al insistir en que la Tierra y los astros regían por un mismo conjunto de leyes.Defendio la antigua idea de que la Tierra giraba entorno al Sol, y puso en duda la creencia igualmente se que la Tierra era el centro del universo.
Isaac
Newton aporto la teoría de la ley de gravitación universal, en 1687, al mismo tiempo creo lo que hoy llamamos calculo.
John Dalton se le conoce por desarrollar la teoría atómica de los elementos y compuestos. Dalton fue el primer científico en clasificar los elementos por su peso atómico.
Al mismo tiempo, la invención del calculo por parte se Newton y del filosofo y matemático alemán Gottfried Leibniz sentó las bases de la ciencia y las matemáticas actuales.
Michael Faraday uno de los científicos mas eminentes del siglo XIX, realizo importantes contribuciones a la física y la
química entre ellas las leyes de la electrolisis y el descubrimiento del benceno.
Los descubrimientos de Newton de Leibniz y del filosofo francés
Rene Descartes dieron paso a la ciencia materialista del siglo XVIII, que trata de explicar los procesos vitales a partir de su base físico-química.
La confianza en la
actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución Francesa de 1789. El químico francés Antoine Laurent de Lavoisier publicó el Tratado elemental de química en 1789 e inició así la revolución de la química cuantitativa.
Esta teoría revolucionaria se publicó en 1859 en el famoso tratado El origen de las especies por medio de la
selección natural.
Los avances científicos del siglo XVIII prepararon el camino para el siguiente, llamado a veces "siglo de la correlación" por las amplias generalizaciones que tuvieron lugar en la ciencia. Charles
Darwin estuvo influenciado por el geólogo Adam Sedgwick y el naturalista John Henslow en el desarrollo de su teoría de la evolución de las especies. Otras grandes figuras de esta época también fueron: Jhon Dalton con la teoría atómica de la materia, las teorías electromagnéticas de Michael Faraday y J ames
Clero Maxwell y el físico británico James Prescott con la ley de la
Conservación de la energía.
Y por supuesto
Albert Einstein con la teoría de la relatividad y por sus hipótesis sobre la naturaleza corpuscular de la luz, es considerado uno de los mayores científicos de toda la historia.
Por otra parte a principios de siglo XX el científico Carl Von Lineo tenia un profundo
interés por la botánica y desarrollo un sistema para clasificar las plantas en el que utilizaba un método binomial de nomenclatura significa.
En el siglo XIX se han visto avances como lo es el genoma humano, el
proyecto de la NASA, que ha sido un gran paso para el hombre, el desarrollo de la bomba atómica, el descubrimiento de la vacuna de la poliomielitis ,la malaria, la fiebre amarilla y demás, estamos en una constante evolución y todo esto se debe gracias a que los esfuerzos que han realizado los matemáticos, filósofos, biólogos y demás que se cuestionaron, analizaron y razonaron cosas sencillas de la vida cotidiana que en verdad son grandes cosas al ser descubiertas.
BIBLIOGRAFIA:
La Ciencia su Método y su Filosofía. Mario Bunge
Historia y
sociología de la ciencia. Editorial Alianza. González Blasco.
Sobre la Ciencia y el Método. Henry Poincare.
Tierra 9. Editorial
Libros y Libros. Nubia Alarcón Rodríguez
Enciclopedia Grijalbo

jueves, 10 de abril de 2008

BIENVENIDO AL MUNDO DE LA CIENCIA